1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2022 Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

extern crate approx;
extern crate hifitime;
extern crate serde;

use super::hyperdual::linalg::norm;
use super::hyperdual::{Float, OHyperdual};
use super::na::{Vector3, U7};
use super::{Frame, Orbit};
use crate::md::StateParameter;
use crate::time::Epoch;
use crate::{NyxError, TimeTagged};
use std::f64::consts::PI;
use std::f64::EPSILON;
use std::fmt;

/// If an orbit has an eccentricity below the following value, it is considered circular (only affects warning messages)
pub const ECC_EPSILON: f64 = 1e-11;

/// Orbit defines an orbital state
///
/// Unless noted otherwise, algorithms are from GMAT 2016a [StateConversionUtil.cpp](https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/src/base/util/StateConversionUtil.cpp).
/// Regardless of the constructor used, this struct stores all the state information in Cartesian coordinates
/// as these are always non singular.
/// _Note:_ although not yet supported, this struct may change once True of Date or other nutation frames
/// are added to the toolkit.
#[derive(Copy, Clone, Debug)]
pub struct OrbitDual {
    /// in km
    pub x: OHyperdual<f64, U7>,
    /// in km
    pub y: OHyperdual<f64, U7>,
    /// in km
    pub z: OHyperdual<f64, U7>,
    /// in km/s
    pub vx: OHyperdual<f64, U7>,
    /// in km/s
    pub vy: OHyperdual<f64, U7>,
    /// in km/s
    pub vz: OHyperdual<f64, U7>,
    pub dt: Epoch,
    /// Frame contains everything we need to compute state information
    pub frame: Frame,
}

impl From<Orbit> for OrbitDual {
    /// Initialize a new OrbitDual from an orbit, no other initializers
    fn from(orbit: Orbit) -> Self {
        Self {
            x: OHyperdual::from_slice(&[orbit.x, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0]),
            y: OHyperdual::from_slice(&[orbit.y, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0]),
            z: OHyperdual::from_slice(&[orbit.z, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]),
            vx: OHyperdual::from_slice(&[orbit.vx, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0]),
            vy: OHyperdual::from_slice(&[orbit.vy, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0]),
            vz: OHyperdual::from_slice(&[orbit.vz, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]),
            dt: orbit.dt,
            frame: orbit.frame,
        }
    }
}

/// A type which stores the partial of an element
#[derive(Copy, Clone, Debug)]
pub struct OrbitPartial {
    pub param: StateParameter,
    pub dual: OHyperdual<f64, U7>,
}

impl OrbitPartial {
    /// Returns the real value of this parameter
    pub fn real(&self) -> f64 {
        self.dual[0]
    }
    /// The partial of this parameter with respect to X
    pub fn wtr_x(&self) -> f64 {
        self.dual[1]
    }
    /// The partial of this parameter with respect to Y
    pub fn wtr_y(&self) -> f64 {
        self.dual[2]
    }
    /// The partial of this parameter with respect to Z
    pub fn wtr_z(&self) -> f64 {
        self.dual[3]
    }
    /// The partial of this parameter with respect to VX
    pub fn wtr_vx(&self) -> f64 {
        self.dual[4]
    }
    /// The partial of this parameter with respect to VY
    pub fn wtr_vy(&self) -> f64 {
        self.dual[5]
    }
    /// The partial of this parameter with respect to VZ
    pub fn wtr_vz(&self) -> f64 {
        self.dual[6]
    }
}

impl fmt::Display for OrbitPartial {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:?} {}", self.param, self.dual)
    }
}

impl OrbitDual {
    pub fn partial_for(&self, param: &StateParameter) -> Result<OrbitPartial, NyxError> {
        match param {
            StateParameter::X => Ok(OrbitPartial {
                dual: self.x,
                param: StateParameter::X,
            }),
            StateParameter::Y => Ok(OrbitPartial {
                dual: self.y,
                param: StateParameter::Y,
            }),
            StateParameter::Z => Ok(OrbitPartial {
                dual: self.z,
                param: StateParameter::Z,
            }),
            StateParameter::VX => Ok(OrbitPartial {
                dual: self.vx,
                param: StateParameter::VX,
            }),
            StateParameter::VY => Ok(OrbitPartial {
                dual: self.vy,
                param: StateParameter::VY,
            }),
            StateParameter::VZ => Ok(OrbitPartial {
                dual: self.vz,
                param: StateParameter::VZ,
            }),
            StateParameter::Rmag => Ok(self.rmag()),
            StateParameter::Vmag => Ok(self.vmag()),
            StateParameter::HX => Ok(self.hx()),
            StateParameter::HY => Ok(self.hy()),
            StateParameter::HZ => Ok(self.hz()),
            StateParameter::Hmag => Ok(self.hmag()),
            StateParameter::Energy => Ok(self.energy()),
            StateParameter::SMA => Ok(self.sma()),
            StateParameter::Eccentricity => Ok(self.ecc()),
            StateParameter::Inclination => Ok(self.inc()),
            StateParameter::AoP => Ok(self.aop()),
            StateParameter::AoL => Ok(self.aol()),
            StateParameter::RAAN => Ok(self.raan()),
            StateParameter::Periapsis => Ok(self.periapsis()),
            StateParameter::Apoapsis => Ok(self.apoapsis()),
            StateParameter::TrueLongitude => Ok(self.tlong()),
            StateParameter::FlightPathAngle => Ok(self.fpa()),
            StateParameter::MeanAnomaly => Ok(self.ma()),
            StateParameter::EccentricAnomaly => Ok(self.ea()),
            StateParameter::GeodeticHeight => Ok(self.geodetic_height()),
            StateParameter::GeodeticLatitude => Ok(self.geodetic_latitude()),
            StateParameter::GeodeticLongitude => Ok(self.geodetic_longitude()),
            StateParameter::C3 => Ok(self.c3()),
            StateParameter::RightAscension => Ok(self.right_ascension()),
            StateParameter::Declination => Ok(self.declination()),
            StateParameter::HyperbolicAnomaly => self.hyperbolic_anomaly(),
            StateParameter::SemiParameter => Ok(self.semi_parameter()),
            StateParameter::SemiMinorAxis => Ok(self.semi_minor_axis()),
            _ => Err(NyxError::PartialsUndefined),
        }
    }

    /// Returns the magnitude of the radius vector in km
    pub fn rmag(&self) -> OrbitPartial {
        OrbitPartial {
            param: StateParameter::Rmag,
            dual: (self.x.powi(2) + self.y.powi(2) + self.z.powi(2)).sqrt(),
        }
    }

    /// Returns the magnitude of the velocity vector in km/s
    pub fn vmag(&self) -> OrbitPartial {
        OrbitPartial {
            param: StateParameter::Vmag,
            dual: (self.vx.powi(2) + self.vy.powi(2) + self.vz.powi(2)).sqrt(),
        }
    }

    /// Returns the radius vector of this Orbit in [km, km, km]
    pub(crate) fn radius(&self) -> Vector3<OHyperdual<f64, U7>> {
        Vector3::new(self.x, self.y, self.z)
    }

    /// Returns the velocity vector of this Orbit in [km/s, km/s, km/s]
    pub(crate) fn velocity(&self) -> Vector3<OHyperdual<f64, U7>> {
        Vector3::new(self.vx, self.vy, self.vz)
    }

    /// Returns the orbital momentum vector
    pub(crate) fn hvec(&self) -> Vector3<OHyperdual<f64, U7>> {
        self.radius().cross(&self.velocity())
    }

    /// Returns the orbital momentum value on the X axis
    pub fn hx(&self) -> OrbitPartial {
        OrbitPartial {
            dual: self.hvec()[0],
            param: StateParameter::HX,
        }
    }

    /// Returns the orbital momentum value on the Y axis
    pub fn hy(&self) -> OrbitPartial {
        OrbitPartial {
            dual: self.hvec()[1],
            param: StateParameter::HY,
        }
    }

    /// Returns the orbital momentum value on the Z axis
    pub fn hz(&self) -> OrbitPartial {
        OrbitPartial {
            dual: self.hvec()[2],
            param: StateParameter::HZ,
        }
    }

    /// Returns the norm of the orbital momentum
    pub fn hmag(&self) -> OrbitPartial {
        OrbitPartial {
            dual: norm(&self.hvec()),
            param: StateParameter::Hmag,
        }
    }

    /// Returns the specific mechanical energy
    pub fn energy(&self) -> OrbitPartial {
        match self.frame {
            Frame::Geoid { gm, .. } | Frame::Celestial { gm, .. } => OrbitPartial {
                dual: self.vmag().dual.powi(2) / OHyperdual::from(2.0)
                    - OHyperdual::from(gm) / self.rmag().dual,
                param: StateParameter::Energy,
            },
            _ => panic!("orbital energy not defined in this frame"),
        }
    }

    /// Returns the semi-major axis in km
    pub fn sma(&self) -> OrbitPartial {
        match self.frame {
            Frame::Geoid { gm, .. } | Frame::Celestial { gm, .. } => OrbitPartial {
                dual: -OHyperdual::from(gm) / (OHyperdual::from(2.0) * self.energy().dual),
                param: StateParameter::SMA,
            },
            _ => panic!("sma not defined in this frame"),
        }
    }

    /// Returns the eccentricity vector (no unit)
    pub(crate) fn evec(&self) -> Vector3<OHyperdual<f64, U7>> {
        match self.frame {
            Frame::Geoid { gm, .. } | Frame::Celestial { gm, .. } => {
                let r = self.radius();
                let v = self.velocity();
                let hgm = OHyperdual::from(gm);
                // Split up this operation because it doesn't seem to be implemented
                // ((norm(&v).powi(2) - hgm / norm(&r)) * r - (r.dot(&v)) * v) / hgm
                Vector3::new(
                    ((norm(&v).powi(2) - hgm / norm(&r)) * r[0] - (r.dot(&v)) * v[0]) / hgm,
                    ((norm(&v).powi(2) - hgm / norm(&r)) * r[1] - (r.dot(&v)) * v[1]) / hgm,
                    ((norm(&v).powi(2) - hgm / norm(&r)) * r[2] - (r.dot(&v)) * v[2]) / hgm,
                )
            }
            _ => panic!("eccentricity not defined in this frame"),
        }
    }

    /// Returns the eccentricity (no unit)
    pub fn ecc(&self) -> OrbitPartial {
        OrbitPartial {
            dual: norm(&self.evec()),
            param: StateParameter::Eccentricity,
        }
    }

    /// Returns the inclination in degrees
    pub fn inc(&self) -> OrbitPartial {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => OrbitPartial {
                dual: (self.hvec()[(2, 0)] / self.hmag().dual).acos().to_degrees(),
                param: StateParameter::Inclination,
            },
            _ => panic!("inclination not defined in this frame"),
        }
    }

    /// Returns the argument of periapsis in degrees
    pub fn aop(&self) -> OrbitPartial {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => {
                let n = Vector3::new(
                    OHyperdual::from(0.0),
                    OHyperdual::from(0.0),
                    OHyperdual::from(1.0),
                )
                .cross(&self.hvec());
                let aop = (n.dot(&self.evec()) / (norm(&n) * self.ecc().dual)).acos();
                if aop.is_nan() {
                    error!("AoP is NaN");
                    OrbitPartial {
                        dual: OHyperdual::from(0.0),
                        param: StateParameter::AoP,
                    }
                } else if self.evec()[2].real() < 0.0 {
                    OrbitPartial {
                        dual: (OHyperdual::from(2.0 * PI) - aop).to_degrees(),
                        param: StateParameter::AoP,
                    }
                } else {
                    OrbitPartial {
                        dual: aop.to_degrees(),
                        param: StateParameter::AoP,
                    }
                }
            }
            _ => panic!("aop not defined in this frame"),
        }
    }

    /// Returns the right ascension of ther ascending node in degrees
    pub fn raan(&self) -> OrbitPartial {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => {
                let n = Vector3::new(
                    OHyperdual::from(0.0),
                    OHyperdual::from(0.0),
                    OHyperdual::from(1.0),
                )
                .cross(&self.hvec());
                let raan = (n[(0, 0)] / norm(&n)).acos();
                if raan.is_nan() {
                    warn!("RAAN is NaN");
                    OrbitPartial {
                        dual: OHyperdual::from(0.0),
                        param: StateParameter::RAAN,
                    }
                } else if n[(1, 0)] < 0.0 {
                    OrbitPartial {
                        dual: (OHyperdual::from(2.0 * PI) - raan).to_degrees(),
                        param: StateParameter::RAAN,
                    }
                } else {
                    OrbitPartial {
                        dual: raan.to_degrees(),
                        param: StateParameter::RAAN,
                    }
                }
            }
            _ => panic!("RAAN not defined in this frame"),
        }
    }

    /// Returns the true anomaly in degrees between 0 and 360.0
    ///
    /// NOTE: This function will emit a warning stating that the TA should be avoided if in a very near circular orbit
    /// Code from https://github.com/ChristopherRabotin/GMAT/blob/80bde040e12946a61dae90d9fc3538f16df34190/src/gmatutil/util/StateConversionUtil.cpp#L6835
    pub fn ta(&self) -> OrbitPartial {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => {
                if self.ecc().real() < ECC_EPSILON {
                    warn!(
                        "true anomaly ill-defined for circular orbit (e = {})",
                        self.ecc()
                    );
                }
                let cos_nu = self.evec().dot(&self.radius()) / (self.ecc().dual * self.rmag().dual);
                if (cos_nu.real().abs() - 1.0).abs() < EPSILON {
                    // This bug drove me crazy when writing SMD in Go in 2017.
                    if cos_nu > 1.0 {
                        OrbitPartial {
                            dual: OHyperdual::from(180.0),
                            param: StateParameter::TrueAnomaly,
                        }
                    } else {
                        OrbitPartial {
                            dual: OHyperdual::from(0.0),
                            param: StateParameter::TrueAnomaly,
                        }
                    }
                } else {
                    let ta = cos_nu.acos();
                    if ta.is_nan() {
                        warn!("TA is NaN");
                        OrbitPartial {
                            dual: OHyperdual::from(0.0),
                            param: StateParameter::TrueAnomaly,
                        }
                    } else if self.radius().dot(&self.velocity()) < 0.0 {
                        OrbitPartial {
                            dual: (OHyperdual::from(2.0 * PI) - ta).to_degrees(),
                            param: StateParameter::TrueAnomaly,
                        }
                    } else {
                        OrbitPartial {
                            dual: ta.to_degrees(),
                            param: StateParameter::TrueAnomaly,
                        }
                    }
                }
            }
            _ => panic!("true anomaly not defined in this frame"),
        }
    }

    /// Returns the true longitude in degrees
    pub fn tlong(&self) -> OrbitPartial {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => {
                // Angles already in degrees
                OrbitPartial {
                    dual: self.aop().dual + self.raan().dual + self.ta().dual,
                    param: StateParameter::TrueLongitude,
                }
            }
            _ => panic!("true longitude not defined in this frame"),
        }
    }

    /// Returns the argument of latitude in degrees
    ///
    /// NOTE: If the orbit is near circular, the AoL will be computed from the true longitude
    /// instead of relying on the ill-defined true anomaly.
    pub fn aol(&self) -> OrbitPartial {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => {
                if self.ecc().real() < ECC_EPSILON {
                    OrbitPartial {
                        dual: self.tlong().dual - self.raan().dual,
                        param: StateParameter::AoL,
                    }
                } else {
                    OrbitPartial {
                        dual: self.aop().dual + self.ta().dual,
                        param: StateParameter::AoL,
                    }
                }
            }
            _ => panic!("argument of latitude not defined in this frame"),
        }
    }

    /// Returns the radius of periapsis (or perigee around Earth), in kilometers.
    pub fn periapsis(&self) -> OrbitPartial {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => OrbitPartial {
                dual: self.sma().dual * (OHyperdual::from(1.0) - self.ecc().dual),
                param: StateParameter::Periapsis,
            },
            _ => panic!("periapsis not defined in this frame"),
        }
    }

    /// Returns the radius of apoapsis (or apogee around Earth), in kilometers.
    pub fn apoapsis(&self) -> OrbitPartial {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => OrbitPartial {
                dual: self.sma().dual * (OHyperdual::from(1.0) + self.ecc().dual),
                param: StateParameter::Apoapsis,
            },
            _ => panic!("apoapsis not defined in this frame"),
        }
    }

    /// Returns the eccentric anomaly in degrees
    ///
    /// This is a conversion from GMAT's StateConversionUtil::TrueToEccentricAnomaly
    pub fn ea(&self) -> OrbitPartial {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => {
                let (sin_ta, cos_ta) = self.ta().dual.to_radians().sin_cos();
                let ecc_cos_ta = self.ecc().dual * cos_ta;
                let sin_ea = ((OHyperdual::from(1.0) - self.ecc().dual.powi(2)).sqrt() * sin_ta)
                    / (OHyperdual::from(1.0) + ecc_cos_ta);
                let cos_ea = (self.ecc().dual + cos_ta) / (OHyperdual::from(1.0) + ecc_cos_ta);
                // The atan2 function is a bit confusing: https://doc.rust-lang.org/std/primitive.f64.html#method.atan2 .
                OrbitPartial {
                    dual: sin_ea.atan2(cos_ea).to_degrees(),
                    param: StateParameter::EccentricAnomaly,
                }
            }
            _ => panic!("eccentric anomaly is not defined in this frame"),
        }
    }

    /// Returns the flight path angle in degrees
    pub fn fpa(&self) -> OrbitPartial {
        let nu = self.ta().dual.to_radians();
        let ecc = self.ecc().dual;
        let denom =
            (OHyperdual::from(1.0) + OHyperdual::from(2.0) * ecc * nu.cos() + ecc.powi(2)).sqrt();
        let sin_fpa = ecc * nu.sin() / denom;
        let cos_fpa = OHyperdual::from(1.0) + ecc * nu.cos() / denom;
        OrbitPartial {
            dual: sin_fpa.atan2(cos_fpa).to_degrees(),
            param: StateParameter::FlightPathAngle,
        }
    }

    /// Returns the mean anomaly in degrees
    ///
    /// This is a conversion from GMAT's StateConversionUtil::TrueToMeanAnomaly
    pub fn ma(&self) -> OrbitPartial {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => {
                if self.ecc().real() < 1.0 {
                    OrbitPartial {
                        dual: (self.ea().dual.to_radians()
                            - self.ecc().dual * self.ea().dual.to_radians().sin())
                        .to_degrees(),
                        param: StateParameter::MeanAnomaly,
                    }
                } else if self.ecc().real() > 1.0 {
                    info!("computing the hyperbolic anomaly");
                    // From GMAT's TrueToHyperbolicAnomaly
                    OrbitPartial {
                        dual: ((self.ta().dual.to_radians().sin()
                            * (self.ecc().dual.powi(2) - OHyperdual::from(1.0)))
                        .sqrt()
                            / (OHyperdual::from(1.0)
                                + self.ecc().dual * self.ta().dual.to_radians().cos()))
                        .asinh()
                        .to_degrees(),
                        param: StateParameter::MeanAnomaly,
                    }
                } else {
                    error!("parabolic orbit: setting mean anomaly to 0.0");
                    OrbitPartial {
                        dual: OHyperdual::from(0.0),
                        param: StateParameter::MeanAnomaly,
                    }
                }
            }
            _ => panic!("mean anomaly is not defined in this frame"),
        }
    }

    /// Returns the semi parameter (or semilatus rectum)
    pub fn semi_parameter(&self) -> OrbitPartial {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => OrbitPartial {
                dual: self.sma().dual * (OHyperdual::from(1.0) - self.ecc().dual.powi(2)),
                param: StateParameter::SemiParameter,
            },
            _ => panic!("semi parameter is not defined in this frame"),
        }
    }

    /// Returns the geodetic longitude (λ) in degrees. Value is between 0 and 360 degrees.
    ///
    /// Although the reference is not Vallado, the math from Vallado proves to be equivalent.
    /// Reference: G. Xu and Y. Xu, "GPS", DOI 10.1007/978-3-662-50367-6_2, 2016
    pub fn geodetic_longitude(&self) -> OrbitPartial {
        match self.frame {
            Frame::Geoid { .. } => OrbitPartial {
                dual: self.y.atan2(self.x).to_degrees(),
                param: StateParameter::GeodeticLongitude,
            },
            _ => panic!("geodetic elements only defined in a Geoid frame"),
        }
    }

    /// Returns the geodetic latitude (φ) in degrees. Value is between -180 and +180 degrees.
    ///
    /// Reference: Vallado, 4th Ed., Algorithm 12 page 172.
    pub fn geodetic_latitude(&self) -> OrbitPartial {
        match self.frame {
            Frame::Geoid {
                flattening,
                semi_major_radius,
                ..
            } => {
                let eps = 1e-12;
                let max_attempts = 20;
                let mut attempt_no = 0;
                let r_delta = (self.x.powi(2) + self.y.powi(2)).sqrt();
                let mut latitude = (self.z / self.rmag().dual).asin();
                let e2 = OHyperdual::from(flattening * (2.0 - flattening));
                loop {
                    attempt_no += 1;
                    let c_earth = OHyperdual::from(semi_major_radius)
                        / ((OHyperdual::from(1.0) - e2 * (latitude).sin().powi(2)).sqrt());
                    let new_latitude = (self.z + c_earth * e2 * (latitude).sin()).atan2(r_delta);
                    if (latitude - new_latitude).abs() < eps {
                        return OrbitPartial {
                            dual: new_latitude.to_degrees(),
                            param: StateParameter::GeodeticLatitude,
                        };
                    } else if attempt_no >= max_attempts {
                        error!(
                            "geodetic latitude failed to converge -- error = {}",
                            (latitude - new_latitude).abs()
                        );
                        return OrbitPartial {
                            dual: new_latitude.to_degrees(),
                            param: StateParameter::GeodeticLatitude,
                        };
                    }
                    latitude = new_latitude;
                }
            }
            _ => panic!("geodetic elements only defined in a Geoid frame"),
        }
    }

    /// Returns the geodetic height in km.
    ///
    /// Reference: Vallado, 4th Ed., Algorithm 12 page 172.
    pub fn geodetic_height(&self) -> OrbitPartial {
        match self.frame {
            Frame::Geoid {
                flattening,
                semi_major_radius,
                ..
            } => {
                let e2 = OHyperdual::from(flattening * (2.0 - flattening));
                let latitude = self.geodetic_latitude().dual.to_radians();
                let sin_lat = latitude.sin();
                if (latitude - OHyperdual::from(1.0)).abs() < 0.1 {
                    // We are near poles, let's use another formulation.
                    let s_earth0: f64 = semi_major_radius * (1.0 - flattening).powi(2);
                    let s_earth = OHyperdual::from(s_earth0)
                        / ((OHyperdual::from(1.0) - e2 * sin_lat.powi(2)).sqrt());
                    OrbitPartial {
                        dual: self.z / latitude.sin() - s_earth,
                        param: StateParameter::GeodeticHeight,
                    }
                } else {
                    let c_earth = OHyperdual::from(semi_major_radius)
                        / ((OHyperdual::from(1.0) - e2 * sin_lat.powi(2)).sqrt());
                    let r_delta = (self.x.powi(2) + self.y.powi(2)).sqrt();
                    OrbitPartial {
                        dual: r_delta / latitude.cos() - c_earth,
                        param: StateParameter::GeodeticHeight,
                    }
                }
            }
            _ => panic!("geodetic elements only defined in a Geoid frame"),
        }
    }

    /// Returns the right ascension of this orbit in degrees
    #[allow(clippy::eq_op)]
    pub fn right_ascension(&self) -> OrbitPartial {
        OrbitPartial {
            dual: (self.y.atan2(self.x)).to_degrees(),
            param: StateParameter::RightAscension,
        }
    }

    /// Returns the declination of this orbit in degrees
    #[allow(clippy::eq_op)]
    pub fn declination(&self) -> OrbitPartial {
        OrbitPartial {
            dual: (self.z / self.rmag().dual).asin().to_degrees(),
            param: StateParameter::Declination,
        }
    }

    /// Returns the semi minor axis in km, includes code for a hyperbolic orbit
    pub fn semi_minor_axis(&self) -> OrbitPartial {
        if self.ecc().real() <= 1.0 {
            OrbitPartial {
                dual: ((self.sma().dual * self.ecc().dual).powi(2) - self.sma().dual.powi(2))
                    .sqrt(),
                param: StateParameter::SemiMinorAxis,
            }
        } else {
            OrbitPartial {
                dual: self.hmag().dual.powi(2)
                    / (OHyperdual::from(self.frame.gm())
                        * (self.ecc().dual.powi(2) - OHyperdual::from(1.0)).sqrt()),
                param: StateParameter::SemiMinorAxis,
            }
        }
    }

    /// Returns the velocity declination of this orbit in degrees
    pub fn velocity_declination(&self) -> OrbitPartial {
        OrbitPartial {
            dual: (self.vz / self.vmag().dual).asin().to_degrees(),
            param: StateParameter::VelocityDeclination,
        }
    }

    /// Returns the $C_3$ of this orbit
    pub fn c3(&self) -> OrbitPartial {
        OrbitPartial {
            dual: -OHyperdual::from(self.frame.gm()) / self.sma().dual,
            param: StateParameter::C3,
        }
    }

    /// Returns the hyperbolic anomaly in degrees between 0 and 360.0
    pub fn hyperbolic_anomaly(&self) -> Result<OrbitPartial, NyxError> {
        if self.ecc().real() <= 1.0 {
            Err(NyxError::NotHyperbolic(
                "Orbit is not hyperbolic so there is no hyperbolic anomaly.".to_string(),
            ))
        } else {
            let (sin_ta, cos_ta) = self.ta().dual.to_radians().sin_cos();
            let sinh_h = (sin_ta * (self.ecc().dual.powi(2) - OHyperdual::from(1.0)).sqrt())
                / (OHyperdual::from(1.0) + self.ecc().dual * cos_ta);
            Ok(OrbitPartial {
                dual: sinh_h.asinh().to_degrees(),
                param: StateParameter::HyperbolicAnomaly,
            })
        }
    }
}

impl TimeTagged for OrbitDual {
    fn epoch(&self) -> Epoch {
        self.dt
    }

    fn set_epoch(&mut self, epoch: Epoch) {
        self.dt = epoch
    }
}